COMMENTS ON "ON THE COMBINATORIAL CUSPIDALIZATION OF HYPERBOLIC CURVES"

Shinichi Mochizuki

January 2024

(1.) In lines 4–5 of the third paragraph of the discussion entitled "The Étale Fundamental Group of a Log Scheme" in §0, the phrase "unramified over R_{\circ} " should read "unramified over $U_{S_{\circ}}$ ".

(2.) In Fig. 1, the subscripts "b", "c" in the notation " F_b ", " F_c " should be reversed.

(3.) In the statement of Proposition 1.3, (i), the phrase "the set of divisors $\mathcal{D}_n^{\text{ver}}$ which" should read "the set of divisors which"; the notation " $\delta \in \mathcal{D}_n^{\text{hor"}}$ should read " $\delta \in \mathcal{D}_n^{\text{ver}}$ ".

(4.) In the statement of Proposition 1.3, (iv), the notation " $\mathcal{D}_n^{\text{hor}}$ " should read " $\mathcal{D}_n^{\text{ver}}$ ".

(5.) In the first paragraph of the proof of Corollary 1.14, the text "First, let us ... Now let" should read as follows:

First, let us observe that relative to the *natural isomorphism* $X_n^{\log} \xrightarrow{\sim} (\overline{\mathcal{M}}_{0,n+3}^{\log})_k$ [cf. Definition 1.1, (vi)], the divisors of X_n that belong to \mathcal{D}_n are precisely the *divisors at infinity* of $(\overline{\mathcal{M}}_{0,n+3}^{\log})_k$. [Indeed, this follows immediately from the well-known geometry of $(\overline{\mathcal{M}}_{0,n+3}^{\log})_k$.] In particular, the automorphisms of $(\overline{\mathcal{M}}_{0,n+3}^{\log})_k$ arising from the permutations of the ordering of the cusps *permute* the divisors that belong to \mathcal{D}_n . Thus, we conclude that the *outer modular symmetries* \in Out (Π_n) *normalize* Out^{QS} $(\Pi_n) = \text{Out}^{\text{FC}}(\Pi_n)^{\text{cusp}}$ [cf. Proposition 1.3, (vi), (vii)]. Now let

(6.) In Definition 5.2, (ii), the phrase "of x in \mathcal{U} " should read "of x in \mathcal{N} ".

(7.) In the argument given in Remark 1.1.5 [i.e., beginning with "Indeed, ..."], it is necessary to apply Proposition 1.2, (iii). [One verifies immediately that there are no vicious circles in the reasoning.]